Distancia al equilibrio en superestadística

Sergio Davis^{1,2} <sergio.davis@cchen.cl>

¹ Centro de Investigación en la Intersección de Física de Plasmas, Materia y Complejidad (P²mc), Comisión Chilena de Energía Nuclear

² Departamento de Física, Facultad de Ciencias Exactas, **Universidad Andrés Bello**

Sochifi 2024 | Universidad de la Frontera | Noviembre 20-22, 2024

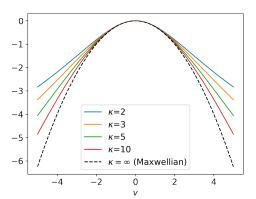
Plan de la presentación

- ► Modelos no canónicos y superestadística
- Un teorema de imposibilidad en la superestadística
- Una distancia superestadística al equilibrio
- Ejemplo: partículas con distribución kappa de velocidades
- Conclusiones

La distribución kappa

La distribución kappa para la velocidad v de una partícula es de la forma

$$P(v|\kappa, v_{\sf th}) = rac{1}{\eta(\kappa, v_{\sf th})} \left[1 + rac{1}{\kappa - rac{3}{2}} rac{|v|^2}{v_{\sf th}^2}
ight]^{-(\kappa + 1)}, \qquad \kappa \geq rac{3}{2}$$



Es tal que se reduce a la distribución de Maxwell-Boltzmann cuando $\kappa \to \infty$.

¿Cuál es el origen de las distribuciones no canónicas?

$$P(v|\kappa, v_{\mathsf{th}}) = \frac{1}{\eta(\kappa, v_{\mathsf{th}})} \left[1 + \frac{1}{\kappa - \frac{3}{2}} \frac{v^2}{v_{\mathsf{th}}^2} \right]^{-(\kappa + 1)} \quad \neq \quad \frac{\exp\left(-\beta \frac{mv^2}{2}\right)}{Z_1(\beta)}$$

Existen diversas propuestas que apuntan a recuperar distribuciones no canónicas. Entre ellas, se encuentran

- Maximización de un funcional de entropía generalizado (por ej. Tsallis)
- Mecanismos de deformación de las distribuciones (por ej. Kaniadakis)
- Superestadística

La superestadística sólo modifica ligeramente la mecánica estadística estándar, siendo completamente compatible con la teoría de la probabilidad (Bayesiana).

Superestadística (C. Beck, E. G. D. Cohen, 2003)

En superestadística, la temperatura inversa $\beta:=1/(k_BT)$ pasa de una constante a una cantidad *aleatoria* con densidad de probabilidad conjunta

$$P(\Gamma, \beta | \lambda) = P(\Gamma | \beta, \lambda) P(\beta | \lambda) = P(\beta | \lambda) \left[\frac{\exp(-\beta \mathcal{H}(\Gamma))}{Z(\beta)} \right].$$
 (1)

La probabilidad de observar un microestado Γ se obtiene integrando β ,

$$P(\Gamma|\lambda) = \int_0^\infty d\beta P(\beta|\lambda) \left[\frac{\exp(-\beta \mathcal{H}(\Gamma))}{Z(\beta)} \right]. \tag{2}$$

Los modelos superestadísticos son superposiciones de modelos canónicos a diferentes valores de β , con el modelo canónico un caso particular donde

$$P(\beta|\beta_0) = \delta(\beta - \beta_0) \implies P(\Gamma|\beta_0) = \frac{\exp(-\beta_0 \mathcal{H}(\Gamma))}{Z(\beta_0)}$$

Ejemplo: recuperando la distribución de Tsallis

Supongamos una distribución gamma de temperaturas inversas,

$$P(\beta|\lambda) = \frac{1}{u\beta_S \Gamma(1/u)} \exp\left(-\frac{\beta}{u\beta_S}\right) \left(\frac{\beta}{u\beta_S}\right)^{\frac{1}{u}-1} = P(\beta|u,\beta_S)$$
 (3)

donde

$$\beta_S = \langle \beta \rangle_{u,\beta_S} \quad , \quad u = \frac{\langle (\delta \beta)^2 \rangle_{u,\beta_S}}{\langle \beta \rangle_{u,\beta_S}^2} \quad \mathbf{y} \quad \underbrace{u = 0 \iff \text{canónico}}$$

En un sistema con capacidad calórica microcanónica constante, es decir, $E = \alpha k_B T(E)$, tenemos

$$\Omega(E) = \Omega_0 E^{\alpha} \quad \rightarrow \quad Z(\beta) = \int_0^{\infty} dE \ \Omega(E) \exp(-\beta E) = \Omega_0 \Gamma(\alpha + 1) \beta^{-(\alpha + 1)}$$

y podemos reemplazar $Z(\beta)$, obteniendo

$$P(\Gamma|\lambda) = \int_0^\infty d\beta P(\beta|\lambda) \frac{\exp(-\beta \mathcal{H}(\Gamma))}{Z(\beta)} = \frac{\left(1 + u\beta_S \mathcal{H}(\Gamma)\right)^{-\frac{1}{u} - (\alpha + 1)}}{Z_u(\beta_S)}$$

Conexión entre u y los índices κ y q

Recordemos la varianza relativa de β ,

$$u := \frac{\langle (\delta \beta)^2 \rangle_{u,\beta_S}}{\langle \beta \rangle_{u,\beta_S}^2}$$

De ésta se obtiene un índice entrópico q igual a

$$q = 1 + \frac{u}{1 + u(\alpha + 1)} \ge 1 \tag{4}$$

que corresponde a un índice espectral κ dado por

$$\kappa = \frac{1}{u} + \alpha. \tag{5}$$

Es claro aquí que varianza nula de β corresponde a q=1 y por tanto a $\kappa=\infty$.

Temperatura en estados estacionarios

Los modelos superestadísticos pertenecen a la familia más grande de estados estacionarios, donde

$$P(\Gamma|\lambda) = \rho(\mathcal{H}(\Gamma);\lambda), \tag{6}$$

con ρ la función de ensemble.

En superestadística, ρ es la transformada de Laplace de una nueva función f,

$$\rho(E; \lambda) = \int_0^\infty d\beta f(\beta; \lambda) \exp(-\beta E), \qquad f(\beta; \lambda) := \frac{P(\beta | \lambda)}{Z(\beta)}$$
 (7)

Un estado estacionario general posee una temperatura inversa fundamental,

$$\beta_F(E; \lambda) := -\frac{\partial}{\partial E} \ln \rho(E; \lambda)$$

Notemos que $\beta_F(E; \lambda)$ es una constante si y sólo si el modelo es canónico:

$$\rho(E; \beta_0) = \frac{\exp(-\beta_0 E)}{Z(\beta)} \quad \Longleftrightarrow \quad -\frac{\partial}{\partial E} \ln \rho(E; \beta_0) = \beta_0$$

Temperatura en las distribuciones de Tsallis

A partir de la distribución de microestados

$$P(\mathbf{\Gamma}|u,\beta_S) = \frac{1}{Z_u(\beta_S)} \left(1 + u\beta_S \,\mathcal{H}(\mathbf{\Gamma}) \right)^{-\frac{1}{u} - (\alpha + 1)} \tag{8}$$

obtenemos la temperatura inversa fundamental como

$$\beta_F(E; u, \beta_S) = \beta_S \cdot \frac{1 + u(\alpha + 1)}{1 + u\beta_S E} = \frac{\beta_0}{1 + (q - 1)\beta_0 E}$$
 (9)

con $\beta_0 = \beta_S(1 + u(\alpha + 1))$. El valor esperado de β_F está dado por

$$\langle \beta_F \rangle_{u,\beta_S} = \frac{1}{Z_u(\beta_S)} \int_0^\infty d\Gamma \left(1 + u\beta_S \mathcal{H}(\Gamma) \right)^{-\frac{1}{u} - (\alpha + 1)} \beta_F \left(\mathcal{H}(\Gamma); u, \beta_S \right) = \beta_S. \tag{10}$$

que es precisamente la temperatura inversa media según $P(\beta|S)$!

Esto puede demostrarse en general, para cualquier modelo superestadístico:

$$\left\langle eta_F \right\rangle_{oldsymbol{\lambda}} = \left\langle eta \right\rangle_{oldsymbol{\lambda}}$$

Temperatura en superestadística

Recordemos la función de ensemble de la superestadística,

$$\rho(E; \lambda) = \int_0^\infty d\beta f(\beta; \lambda) \exp(-\beta E), \qquad f(\beta; \lambda) := \frac{P(\beta | \lambda)}{Z(\beta)}$$
(11)

Luego de algunos cálculos, puede mostrarse que la distribución condicional

$$P(\beta|\Gamma,\lambda) = \frac{P(\beta,\Gamma|\lambda)}{P(\Gamma|\lambda)} = \frac{f(\beta;\lambda)\exp\left(-\beta\mathcal{H}(\Gamma)\right)}{\rho(\mathcal{H}(\Gamma);\lambda)}$$
(12)

tiene valor medio dado por

$$\langle \beta \rangle_{\Gamma, \lambda} = \beta_F(\mathcal{H}(\Gamma); \lambda),$$
 (13)

y varianza

$$\langle (\delta \beta)^2 \rangle_{\Gamma, \lambda} = -\beta_F'(\mathcal{H}(\Gamma); \lambda).$$
 (14)

La igualdad en (13) sugiere una conexión cercana entre β y $\beta_F(\mathcal{H}; \lambda)$, siendo esta última **un observable en el espacio de fase**.

Un teorema de imposibilidad en la superestadística

La igualdad $(\beta)_{\Gamma,\lambda} = \beta_F(\mathcal{H}(\Gamma);\lambda)$ sugiere fuertemente que β podría ser intercambiable con $\beta_F(\mathcal{H};\lambda)$. Sin embargo, existe el siguiente teorema.

Teorema: S. Davis, G. Gutiérrez, Physica A 505, 864-870 (2018)

No existe un observable $B(\Gamma)$ tal que

$$\langle G(\boldsymbol{\beta}) \rangle_{\boldsymbol{\Gamma},\boldsymbol{\lambda}} = G(\underline{B}(\boldsymbol{\Gamma}))$$
 (15)

para cualquier función G si el modelo λ no es canónico.

Por el contrario, en el modelo canónico (15) es cierta trivialmente, ya que

$$\langle G(\beta) \rangle_{\Gamma,\beta_0} = G(\beta_0)$$
 (16)

para cualquier función G, así que $B(\Gamma) = \beta_0$ es la función constante.

Una demostración simplificada

Recordemos que

$$\langle \beta \rangle_{\Gamma, \lambda} = \beta_F(\mathcal{H}(\Gamma); \lambda),$$
 (17a)

$$\langle (\delta \beta)^2 \rangle_{\Gamma, \lambda} = -\beta_F'(\mathcal{H}(\Gamma); \lambda).$$
 (17b)

Supongamos que $B(\Gamma)$ existe tal que $\langle G(\beta) \rangle_{\Gamma \lambda} = G(B(\Gamma))$ para toda $G(\bullet)$.

Usando $G(\beta) = \delta(\beta - \beta_0)$ vemos claramente que

$$P(\beta = \beta_0 | \mathbf{\Gamma}, \boldsymbol{\lambda}) = \delta(\beta_0 - B(\mathbf{\Gamma}))$$

así que de (17a) y (17b) se sigue que

$$B(\Gamma) = \beta_F(\mathcal{H}(\Gamma); \lambda)$$
 y $\beta_F'(\mathcal{H}(\Gamma); \lambda) = 0$

respectivamente. Luego $\beta_F(\mathcal{H}(\Gamma); \lambda)$ es constante y el modelo es canónico.

En una superestadística no canónica, no hay $B(\Gamma)$ intercambiable con β .

Consecuencias del teorema

Ya que

$$\langle (\delta \beta)^2 \rangle_{\Gamma, \lambda} = -\beta_F'(\mathcal{H}(\Gamma); \lambda) \ge 0$$
 (18)

con igualdad sólo en el modelo canónico, tenemos que

$$\left(\left\langle (\delta \beta)^2 \right\rangle_{\Gamma, \lambda} \neq 0 \right)$$

para cualquier otro modelo superestadístico.

Existe una incerteza intrínseca sobre el valor de β , la cual no desaparece aún cuando incluimos conocimiento perfecto de Γ .

Ejemplo

En distribuciones de Tsallis con q > 1, tenemos

$$\langle (\delta \beta)^2 \rangle_{\Gamma, q, \beta_0} = (\beta_S)^2 (q - 1) > 0.$$

Información contenida en el microestado acerca de β

Si definimos la **información mutua** entre β y Γ como

$$\mathcal{D}(\lambda) := \left\langle \ln \left[\frac{P(\Gamma, \beta | \lambda)}{P(\beta | \lambda) P(\Gamma | \lambda)} \right] \right\rangle_{\lambda}$$

dicha información puede reescribirse como

$$\mathcal{D}(\lambda) = \int_{0}^{\infty} d\beta \int d\mathbf{\Gamma} P(\mathbf{\Gamma}, \beta | \lambda) \ln \left[\frac{P(\mathbf{\Gamma} | \beta) P(\beta | \lambda)}{P(\mathbf{\Gamma} | \lambda) P(\beta | \lambda)} \right]$$

$$= -\int_{0}^{\infty} d\beta \int d\mathbf{\Gamma} P(\mathbf{\Gamma}, \beta | \lambda) \ln \left[\frac{P(\mathbf{\Gamma} | \lambda)}{P(\mathbf{\Gamma} | \beta)} \right] = \left\langle -\ln \left[\frac{P(\mathbf{\Gamma} | \lambda)}{P(\mathbf{\Gamma} | \beta)} \right] \right\rangle_{\lambda}.$$
(19)

Notemos que \mathcal{D} es distinto al valor esperado de la entropía relativa

$$S_{\Gamma}(\beta_0 \to \lambda) := \left\langle -\ln \left[\frac{P(\Gamma|\lambda)}{P(\Gamma|\beta_0)} \right] \right\rangle_{\lambda} = -\int d\Gamma P(\Gamma|\lambda) \ln \left[\frac{P(\Gamma|\lambda)}{P(\Gamma|\beta_0)} \right], \quad (20)$$

ya que

$$\left\langle \mathcal{S}_{\Gamma}(\beta \to \lambda) \right\rangle_{\lambda} = -\int_{0}^{\infty} d\beta \int d\Gamma \frac{P(\beta|\lambda)P(\Gamma|\lambda)}{P(\Gamma|\beta)} \ln \left[\frac{P(\Gamma|\lambda)}{P(\Gamma|\beta)} \right]$$
(21)

En resumen

El teorema demostrado en 2018 nos dice que, para un modelo no canónico en superestadística, se tiene

$$\langle (\delta \beta)^2 \rangle_{\Gamma, \lambda} > 0.$$

Existe una incerteza no nula sobre β aún cuando conocemos Γ exactamente.

Distancia = Contenido de información

La cantidad de información que Γ posee acerca de β está dada por

$$\mathcal{D}(\lambda) := \left\langle \ln \left[\frac{P(\Gamma, \beta | \lambda)}{P(\beta | \lambda) P(\Gamma | \lambda)} \right] \right\rangle_{\lambda} = \left\langle -\ln \left[\frac{P(\Gamma | \lambda)}{P(\Gamma | \beta)} \right] \right\rangle_{\lambda} \ge 0 \quad (22)$$

y es sólo cero si $\lambda = \beta_0$ (esto es, si λ es un modelo canónico a $\beta = \beta_0$).

Ejemplo: partículas con distribución kappa

Generalizamos la distribución de Maxwell-Boltzmann para N partículas,

$$P(v_1,\ldots,v_N|\beta) = \prod_{i=1}^N \frac{\exp\left(-\beta k_i(v_i)\right)}{Z_1(\beta)} \quad \text{con} \quad k_i(v_i) = \frac{m_i v_i^2}{2}$$
 (23)

usando superestadística con distribución gamma de temperaturas inversas,

$$P(\beta|u,\beta_S) = \frac{1}{u\beta_S\Gamma(1/u)} \exp\left(-\frac{\beta}{u\beta_S}\right) \left(\frac{\beta}{u\beta_S}\right)^{\frac{1}{u}-1}.$$
 (24)

Es decir, reemplazamos (23) por

$$P(v_1, \dots, v_N | u, \beta_S) = \int_0^\infty d\beta P(\beta | u, \beta_S) \prod_{i=1}^N \left[\frac{\exp\left(-\beta k_i(v_i)\right)}{Z_1(\beta)} \right]. \tag{25}$$

Por supuesto, sabemos que (23) se recupera para $u \to 0$. Notemos además que las velocidades ya no son independientes, sino correlacionadas.

Ejemplo: partículas con distribución kappa

Luego de integrar sobre β tenemos

$$P(v_1,\ldots,v_N|u,\beta_S) = \left(\frac{u^{\frac{3}{2}}}{Z_1(\beta_S)}\right)^N \frac{\Gamma\left(\frac{1}{u}\right)}{\Gamma\left(\frac{3N}{2} + \frac{1}{u}\right)} \left(1 + u\beta_S \sum_{i=1}^N k_i(v_i)\right)^{-\frac{1}{u} - \frac{3N}{2}}$$

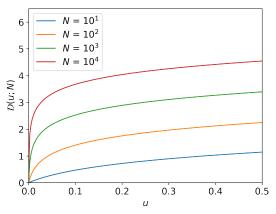
donde $0 \le u \le 1/2$. Introduciendo la función auxiliar $\phi(z) := z \Gamma'(z)$ con $\Gamma'(z)$ la función *digamma*, y luego de algo de cálculo, llegamos a

$$\mathcal{D}(u;N) = \ln \Gamma\left(\frac{1}{u}\right) - \ln \Gamma\left(\frac{3N}{2} + \frac{1}{u}\right) + \phi\left(\frac{3N}{2} + \frac{1}{u}\right) - \phi\left(\frac{1}{u}\right) - \frac{3N}{2}$$

Vemos que \mathcal{D} no depende de la temperatura, sólo de u y N.

La distancia al equilibrio aumenta con u y N

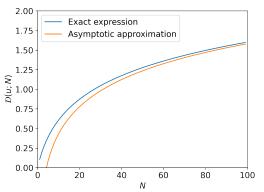
$$\mathcal{D}(u;N) = \ln \Gamma\left(\frac{1}{u}\right) - \ln \Gamma\left(\frac{3N}{2} + \frac{1}{u}\right) + \phi\left(\frac{3N}{2} + \frac{1}{u}\right) - \phi\left(\frac{1}{u}\right) - \frac{3N}{2}$$



Notemos que $\mathcal{D}(0; N) = 0$ para todo N.

Aproximación asintótica

$$\mathcal{D}(u;N) \sim \frac{1}{2} \ln (3N) + \frac{1}{u} + \ln \Gamma(1/u) - \phi(1/u) - \ln 2 - \frac{1}{2} (1 + \ln \pi)$$



Esto permite construir una expresión independiente de N, a saber

$$\tilde{\mathcal{D}}(u) := D(u; N) - \frac{1}{2} \ln(3N).$$

Conclusiones

- ▶ Hemos presentado desde un nuevo punto de vista el teorema de imposibilidad que niega la existencia de una temperatura inversa observable $B(\Gamma)$ en superestadística (no canónica)
- **E**ste teorema es equivalente a afirmar que existe una incerteza mínima no nula sobre β dado Γ excepto para el modelo canónico
- La información mutua \mathcal{D} entre β y Γ tiene la forma de una distancia superestadística al equilibrio
- ightharpoonup En el caso de partículas con distribución kappa de velocidades, el uso de κ como medida de distancia al equilibrio puede justificarse, ya que para N fijo, $\mathcal D$ es una función sólo de u
- Queda por explorar definiciones más generales de distancia al equilibrio, válidas más allá de la superestadística

Gracias por su atención!

IOPscience

Q Journals -

Books

Publishing Support

● Login ▼

Journal of Physics A: Mathematical and Theoretical

PAPER

A superstatistical measure of distance from canonical equilibrium

Sergio Davis 1,2

Published 5 July 2024 • © 2024 IOP Publishing Ltd

Journal of Physics A: Mathematical and Theoretical, Volume 57, Number 29

Citation Sergio Davis 2024 J. Phys. A: Math. Theor. 57 295004

DOI 10 1088/1751-8121/ad5caa

References -

Article and author information

Article metrics

52 Total downloads

Submit

Submit to this Journal

Permissions

Get permission to re-use this article

Share this article

 \square f \times m

Abstract

References

Este trabajo fue financiado por ANID FONDECYT 1220651 Chile Agencia Nacional de Investigación y Desarrollo