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Outline of the Talk

» Non-canonical ensembles and superstatistics

» An impossibility theorem within superstatistics

» A superstatistical distance from equilibrium

» Example: particles with kappa-distributed velocities

» Concluding remarks
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The kappa distribution as a non-canonical distribution

The kappa distribution for the velocity v of a particle can be written as
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It reduces to the Maxwell-Boltzmann distribution when k¥ — co.
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How to explain non-canonical distributions?
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There are several proposals aimed at recovering non-canonical distributions.
Among them,

» Maximization of a generalized entropy functional (e.g. Tsallis)
» Mechanisms of deformation of the distributions (e.g. Kaniadakis)

» Superstatistics

Superstatistics only slightly modifies standard statistical mechanics,
being fully compatible with (Bayesian) probability theory
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Superstatistics (C. Beck, E. G. D. Cohen, 2003)

In superstatistics, the inverse temperature  := 1/ (kgT) is promoted from a
constant to an unknown (“random”) quantity with joint probability density

exp (— BH(T))
Z(B) '

The probability (density) of observing a microstate I is given by the
marginalization rule as

P(T, BIA) = P(T[B, A)P(BIA) = P(B|A) l (1)

P(TIA) = [~ dpP(pI) @

exp (— pH(T))
Z(B) '

Superstatistical ensembles are then superpositions of canonical ensembles at
different values of B. The canonical ensemble is a particular case, as

exp (— BoH(T))
Z(Bo)

P(B|Bo) = 0(B—PBo) == P(I|Bo) =
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Example: recovering Tsallis distributions

Let us assume a gamma distribution of inverse temperatures,

1 B\ (B
P(B|A) = meXp (_Ll‘55> (14/35’) = P(B|u, Bs) (3)

_{(6B2), 5,
(B g,

For a system with constant specific heat, that is, E = akgT, we have

Z(B) = Zo g~ 1+
and we can replace Z(8), obtaining

exp (— BH(T)) (”“ﬁsm )"
ZB)  Zu(Bs)

(uBs)~ "V, g=1+

where

Bs = <‘B>u/l55

and u =0 <= canonical

PTIA) = [ dBP(BIN)
where /0
u

F'(a+1)T(1/u)
T1+u(a+1)

ZulPs) = IF(a+1+1/u)
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Inverse temperature in general steady states

Superstatistical ensembles belong to the larger family of steady state
ensembles, where

P(T|X) = p(H(T); A), (4)
with p the ensemble function. In superstatistics, this is a Laplace transform,

p(E;X) = /Ooodﬁf(ﬁ;k) exp(—pE),  f(BA) = Pé/?l'g) ©

For a general steady state we define the fundamental inverse temperature,

J Inp(E; \)

‘ Pr(EA) = —=&

Notice that Br(E; \) is a constant if and only if the ensemble is canonical.
That is,

p(E;/%o)=m)Z((_£°E) = aaElnp(Eﬁo) Bo
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Inverse temperature in Tsallis ensembles

From the microstate distribution

P(Tlu Bs) = —— (1+ups () "+ ©)
P8 = Zu(Bs) °
we determine the fundamental inverse temperature as
1+u(a+1
Be(E;u, Bs) = Ps - 1) _ Fo (7)

1+uBsE 1+ (g—1)BoE
with Bo = Bs(1 +u(x +1)). The expected value of B is given by

(B s = Zu(lﬁs) /0°° dr (1+ uBsH(T)) =G+ Bp (M (T);u, Bs) = Bs. (8)

in agreement with the superstatistical mean inverse temperature.

In general, it can be proved that, for any superstatistical ensemble,

<ﬁF>A ::<ﬁ>x' 9)
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Inverse temperature in superstatistics

Recall the ensemble function of superstatistics,

p(EN) = [ dBF(BN) exp(~BE),  f(Bi) =
After some calculation, it can be shown that the conditional distribution

P(B,T|A) _ f(B;A) exp (— pH(T))

PBILN) = BN =~ o) (1)
has mean given by
(B)ra = BF(H(I); ), (12)
and variance
((6B)*)p » = —BE (H(T); ). (13)

The equality in (12) suggests a close connection between g and Br(H; \),
the latter being an observable in phase space.
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An impossibility theorem within superstatistics

The equality
<,B>r,>\ = Br(H(T); A)

strongly suggests that g may be interchangeable with Br(#; X). However, the
following theorem holds.

Theorem (*): there is no function B(T) such that

(G(B))r,\ = G(B(I)) (14)

for any function G and a superstatistical, non-canonical steady state A.

In contrast, for the canonical ensemble (14) automatically holds, as

(G(B))r5, = G(Po) (15)

for any function G, so B(T') = By is a constant function.

* S. Davis, G. Gutiérrez. Physica A 505, 864-870 (2018).
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A simplified proof of the theorem

Recall that
(B)r = Br(H(D);N), (162)
((0B))p » = —BE (H(T); N). (16b)
Let us assume that B(T) exists such that (G(B)) = G(B(T)) for all G(s).
Using G(B) = d(B — Bo) we clearly see that
P(B = Bo|T, X) = 5(Bo — B(T))
so from (16a) and (16b) it follows that

(B =pr(HI:A) ) and [ p(HI)A) =0 |

respectively. Then Br(H(T'); A) is a constant and the ensemble is canonical.

‘ In non-canonical superstatistics, there is no B(T') interchangeable with B. ]

Sergio Davis (CCHEN, UNAB) Superstatistical distance from canonical equilibrium MaxEnt 2024, July 1-5



Consequences of the theorem

Since
((68)*)p.n = —BE'(H(T);2) >0 (17)
with equality only for the canonical ensemble, we have that

K

for a non-canonical superstatistical state.

There is an intrinsic uncertainty about the value of B, which
does not vanish even when including perfect knowledge of I

Example: For Tsallis distributions with ¢ > 1, we have

(0B )rpp, = (Bs)? (a-1) 20 (18)

with equality only for g = 1 (canonical).
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Information contained in the microstate about

Let us define the mutual information between g and I as

2= (i [rgipin) ), 2|
A
BIA

This mutual information can be rewritten as
* P(T[B)P(B )}
D(A :/ d /drpr, Al {
* P(FIM] < {P(FIA)D
R /drpr, )\ln[ —(-m .
Jy 48 [ TP pnn | 5 PR |/
Note that D is different from the expected value of the relative entropy

s (-n[FER) -~ e[, o

(19)

because

(Se(p - >\)>A - /Ooo dﬁ/drP(/S\)\)P(l"\)\) In ﬁzg‘;‘;] 21)
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In summary

The 2018 theorem means that, for a non-canonical superstatistical ensemble,

((3B))p 5 > 0.

There is non-zero uncertainty about 8 even when knowing T.

The amount of information that I’ carries about j is given by

2= (n ] ), = (" (o] ), 20

and it is only zero if A represents a canonical ensemble at some value of B.
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Example: particles with kappa-distributed velocities

We generalize the Maxwell-Boltzmann distribution for a system of N particles,

exp (— BK(V))

Pvip) = 22— (29)

with N
K(V) = % Y mio?, (24)

i=1

by using superstatistics under a gamma distribution of inverse temperatures,

_ 1 BN ( B\
PUBlep) = o o (“afe) (i) - @)
That is, (23) is replaced by

exp (— BK(V))

P(V]u,s) = [~ dBP(Blu, bs) [ =0
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Example: particles with kappa-distributed velocities

After integrating over 8 we have

P(Vl]u,Bs) = ZCA?](([;?) (1 +u55K(V))7rT, 0<u< %
where . (% ) %)
Cn(u) =

Introducing the auxiliary function

#(z) ==z (2)

with T’(z) the digamma function, and after lengthy calculations, we obtain

(27)

(29)

1 3N 1 3N 1 1 3N
D(u;N) zlnl"<u> —InT <2+u> +¢(2+u> —¢ <u) e ’

Interestingly, D does not depend on temperature, only on u and N.
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Distance increases with u and N

64 — N=10!
N =102
5{ — N =103
— N=10%
A4-
=
3
&3]
2.
1<
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Note that D(0; N) = 0 for all N.
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Asymptotic approximation

D(u;N) ~ %m (3N) + % +InT(1/u) — $(1/u) — In2 — %(1 )

2.00
—— Exact expression
1.757 Asymptotic approximation

0 20 40 60 80 100
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Concluding Remarks

» We have presented in a new light an impossibility theorem which denies
the existence of an observable inverse temperature B(T') in non-canonical
superstatistics

» The theorem is equivalent to the statement that there is a minimum,
non-zero uncertainty on g given I unless the ensemble is canonical

» The mutual information D between § and I has the form of a
superstatistical distance from equilibrium

» In the case of particles with kappa-distributed velocities, the use of x as a
measure of departure from equilibrium can be justified, as for fixed N, D
is a function only of u

» A more general definition of distance from equilibrium outside
superstatistics remains to be explored
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Thank you for your attention!
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