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Outline of the talk

▶ Non-Maxwellian distributions

▶ Kappa distributions in connection with Tsallis statistics

▶ Inconsistencies in the use of Tsallis entropy

▶ An alternative: Superstatistics

▶ Obtaining kappa distributions from superstatistics

▶ Departure from equilibrium in kappa-distributed plasmas
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How to describe non-equilibrium systems?

Laboratory and space plasmas do not always follow the predictions from equilibrium
thermodynamics

Example:
Electron (also ions?) velocities cannot be described by the Maxwellian distribution,

P(v|m, T) =
(√

m
2πkBT

)3
exp

(
− mv2

2kBT

)
as one would expect for equilibrium systems.
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Kappa distributions

Sergio Davis (CCHEN) Kappa distributions in language of superstatistics LAWPP 2025, January 20-23 ( 4 / 23 )



The kappa distribution of velocities

The kappa distribution for the velocity v of a particle in a plasma∗ can be written as

P(v|κ, vth) =
1

ηκ(vth)

[
1 +

1
κ − 3

2

v2

v2
th

]−(κ+1)

Here, κ is the spectral index and vth is the
so-called thermal velocity, such that

mv2
th

2
= kBT (1)

provides a definition of temperature T.

The limit κ → ∞ of the kappa distribution is the Maxwellian distribution in equilibrium,

P(v|T) =
(√

m
2πkBT

)3
exp

(
− mv2

2kBT

)
. (2)

∗G. Livadiotis and D. J. McComas. Astrophys. J. 741, 88 (2011).
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The kappa distribution as a q-Maxwellian distribution

By defining the q-exponential function

expq(x) :=
[
1 + (1 − q)x

] 1
1−q

+

such that
lim
q→1

expq(x) = exp(x),

we can conveniently write the kappa distribution as a q-Maxwellian,

P(v|κ, vth) =
1

Zq(T0)
expq

(
− mv2

2kBT0

)
, (3)

provided that we set q = 1 +
1

κ + 1
and kBT0 =

(
κ − 3

2
κ + 1

)
kBT.

In the limit κ → ∞ we see that q → 1 and T0 → T as expected.
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Is the kappa distribution a maximum entropy distribution?

The maximum of the non-extensive (Tsallis) entropy∗

Sq[p] :=
1

q − 1

(
1 −

∫
dv p(v)q

)
subject to the constraints on the escort expectation∫

dv p(v)q
(

mv2

2

)
∫

dv p(v)q = k (4)

and normalization, ∫
dv p(v) = 1, (5)

is precisely the kappa distribution (q-Maxwellian)

p(v) =
1

Zq(T0)
expq

(
− mv2

2kBT0

)
. (6)

Important! Constraining the usual expectation
∫

dv p(v)
(

mv2

2

)
does not work!
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Inconsistencies in the use of Tsallis entropy
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Inconsistencies in the use of Tsallis entropy
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A new hope: Superstatistics

Superstatistics replaces the Boltzmann factor exp(−βE) from equilibrium by the mixture∫ ∞

0
dβ f (β) exp(−βE)

of Boltzmann factors at different temperatures weighted by a function f (β) ≥ 0.
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Superstatistics

An example: a mixture of 4 canonical distributions is not itself a canonical distribution

Moreover, it has the desired long tails!

Sergio Davis (CCHEN) Kappa distributions in language of superstatistics LAWPP 2025, January 20-23 ( 11 / 23 )



The connection between superstatistics and plasmas
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The connection between superstatistics and plasmas
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The connection between superstatistics and plasmas

Sergio Davis (CCHEN) Kappa distributions in language of superstatistics LAWPP 2025, January 20-23 ( 14 / 23 )



The connection between superstatistics and plasmas
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Superstatistics as a full statistical framework

Superstatistics is the unique theory where the inverse temperature β := 1/(kBT)
is a random variable with its own probability density P(β|S).

▶ The joint distribution of β with the microstates Γ = (r1, . . . , rN , p1, . . . , pN) is

P(Γ, β|S) = P(Γ|β)P(β|S) =
[

exp
(
− βH(Γ)

)
Z(β)

]
P(β|S). (7)

▶ By integrating out β we arrive at the family of superstatistical ensembles

P(Γ|S) =
∫ ∞

0
dβP(β|S)

[
exp(−βH(Γ))

Z(β)

]
= ρ(H(Γ); S) (8)

which can be understood as a “deformation” of the canonical ensemble.

▶ The ensemble function ρ(E; S) is given by

ρ(E; S) =
∫ ∞

0
dβ f (β; S) exp(−βE) where f (β; S) :=

P(β|S)
Z(β)

.

In other words, it is the Laplace transform of f (β).
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Superstatistics and the kappa distribution

The kappa distribution follows from superstatistics with P(β|S) a gamma distribution,

P(β|u, βS) =
1

uβS Γ(1/u)
exp

(
− β

uβS

)(
β

uβS

) 1
u −1

0 ≤ u < 1

with βS =
〈

β
〉

u,βS
the mean and u :=

〈
(δβ)2〉

u,βS

(βS)2 the relative variance.

The most probable value
(mode) is given by

β∗ := βS (1 − u) ≤ βS
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Superstatistics and the kappa distribution

The original parameters (κ, vth) of the kappa distribution are given in terms of (u, βS) as

κ =
1
u
+

1
2

mv2
th

2
=

1
(1 − u)βS

and we see that u → 0 is equivalent to κ → ∞ (Maxwellian). In fact,

lim
u→0

P(β|u, βS) = δ(β − βS) (9)

therefore we recover the canonical ensemble as

lim
u→0

ρ(E; u, βS) = lim
u→0

[∫ ∞

0
dβ f (β; u, βS) exp(−βE)

]
=

exp(−βSE)
Z(βS)

. (10)
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Two invariant quantities in non-equilibrium steady states

βS :=
〈

β
〉

S U :=
〈
(δβ)2〉

S

From U and βS we can define the dimensionless index

u :=
U

(βS)2 (11)

Sergio Davis (CCHEN) Kappa distributions in language of superstatistics LAWPP 2025, January 20-23 ( 19 / 23 )



Distribution of single-particle kinetic energies

k =
mv2

2
(12)

k∗ =
1

2βS(1 + u)
(13)

P(k|u, βS) =
uβS

B(3/2, 1/u)

[
1 + uβSk

]−( 1
u +

3
2 )√uβSk
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Equipartition and uncertainty in kinetic energies

The mean and relative variance of k in the kappa distribution in terms of (u, βS) are〈
k
〉

u,βS
=

3
2

1
βS (1 − u)

(14)

and 〈
(δk)2〉

u,βS〈
k
〉2

u,βS

=
2 + u

3(1 − 2u)
(15)

respectively. It follows that u < 1/2, and then κ > 5/2.

▶ Equipartition holds, not for the mean βS but for the most probable value β∗

▶ From the mean and variance of k we can infer u and βS, thus fitting the distribution

▶ Higher moments of k may be used to construct statistical tests for detecting kappa
distributions

〈
kn〉

u,βS
= (2βS)

−n
n

∏
m=1

(
1 + 2m
1 − mu

)
(16)
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Distance from equilibrium in kappa distributions

The distance from equilibrium in superstatistics turns out to be identical to the mutual
information between v and β,

D(S) :=
〈

ln
[

P(v, β|S)
P(v|S)P(β|S)

]〉
S

. (17)

In the case of particles with kappa-distributed velocities,

D(κ) = Φ(κ + 1)− Φ(κ − 1/2)− 3
2

where Φ(z) :=
zΓ′(z)
Γ(z)

− ln Γ(z).

D(κ) decreases monotonically with increasing κ, with D = 0 only for κ → ∞.
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Concluding remarks

▶ Superstatistics provides an elegant explanation for the origin of kappa
distributions, without abandoning the Gibbs-Boltzmann entropy

▶ The inverse temperature distribution can be written in terms of new, invariant
parameters u and βS, where u measures temperature uncertainty

▶ The distance from equilibrium in a kappa-distributed plasma has a one-to-one
correspondence with the parameter κ (also with u)

▶ Perhaps kappa distributions are “universal” models that could also be used to
describe laboratory (fusion?) plasmas
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